Structured Output Generator

AI → Silver
💰 $1000

Turns unstructured input into usable formats.

Technology iconTechnology iconTechnology icon

Structured Output Generator Overview

Purpose

The Structured Output Generator is a powerful AI-driven tool designed to transform unstructured or semi-structured input data into well-organized and usable formats. This module leverages advanced natural language processing (NLP) and machine learning techniques to parse, analyze, and reformat raw inputs such as text, JSON, XML, or log files into structured outputs like CSV, JSON, or custom-defined schemas.

The primary goal of this module is to simplify the process of data transformation for developers, enabling them to quickly convert messy or irregular data formats into clean, organized structures that can be easily integrated into applications, databases, or further processing pipelines.


Benefits

  1. Saves Time: Automates the tedious task of manually structuring unstructured data, allowing developers to focus on core application logic.
  2. Enhances Efficiency: Reduces errors and inconsistencies in manual data transformation processes by leveraging AI-powered parsing and formatting capabilities.
  3. Flexibility: Supports multiple input formats (e.g., text, JSON, logs) and output formats (e.g., CSV, JSON, XML), making it adaptable to various use cases.
  4. Real-Time Processing: Capable of processing large volumes of data in real-time, ensuring scalability for both small-scale and enterprise-level applications.
  5. Customizable Outputs: Allows developers to define custom schemas or templates to generate outputs that align with specific project requirements.

Usage Scenarios

1. Data Normalization

2. Structured Logging

3. Metadata Extraction

4. Cross-Format Compatibility


The Structured Output Generator is an essential tool for developers looking to streamline their data processing workflows, ensuring that raw or messy inputs are transformed into clean, structured outputs efficiently and effectively.

Structured Output Generator Module Documentation

The Structured Output Generator module transforms unstructured input into structured formats, aiding developers in efficiently processing and integrating data.

Input Handling

Structured Conversion

Output Formats

Customization

This module enhances data processing efficiency, making it a valuable tool for developers seeking reliable and adaptable solutions.

Structured Output Generator Documentation

This document provides technical details and code examples for using the Structured Output Generator module, which converts unstructured input text into structured formats.


1. FastAPI Endpoint Implementation

Below is an example of a FastAPI endpoint that processes unstructured text:

from fastapi import FastAPI, APIRouter, HTTPException
from pydantic import BaseModel
from typing import Optional
import json
import csv

class InputSchema(BaseModel):
    text: str
    output_format: Literal["json", "csv"] = "json"
    options: Optional[dict] = None  # Additional processing options if needed

app = FastAPI()
router = APIRouter()

@router.post("/process-text")
async def process_text(data: InputSchema):
    try:
        # Simulate processing
        processed_data = {
            "structured": True,
            "content": data.text.split(),
            "format": data.output_format
        }
        
        if data.output_format == "json":
            return {"success": True, "data": json.dumps(processed_data)}
        else:
            # Generate CSV response
            csv_content = f"Text,Processed\n{data.text},{processed_data['content'][0]}"
            return {"success": True, "data": csv_content}
            
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

2. React UI Integration

Here’s a simple React component to interact with the endpoint:

import React, { useState } from 'react';

const StructuredOutput = () => {
    const [inputText, setInputText] = useState("");
    const [outputFormat, setOutputFormat] = useState("json");
    const [loading, setLoading] = useState(false);
    const [result, setResult] = useState(null);

    const handleSubmit = async (e) => {
        e.preventDefault();
        setLoading(true);
        
        try {
            const response = await fetch('/api/process-text', {
                method: 'POST',
                headers: {
                    'Content-Type': 'application/json'
                },
                body: JSON.stringify({
                    text: inputText,
                    output_format: outputFormat
                })
            });

            if (!response.ok) throw new Error('Failed to process text');
            
            const data = await response.json();
            setResult(data.data);
        } catch (error) {
            console.error('Error:', error);
            setResult("Error processing text");
        } finally {
            setLoading(false);
        }
    };

    return (
        <div>
            <form onSubmit={handleSubmit}>
                <textarea 
                    value={inputText}
                    onChange={(e) => setInputText(e.target.value)}
                    placeholder="Enter unstructured text here..."
                    style={{ width: '100%', height: 150 }}
                />
                <select
                    value={outputFormat}
                    onChange={(e) => setOutputFormat(e.target.value)}
                >
                    <option value="json">JSON</option>
                    <option value="csv">CSV</option>
                </select>
                <button type="submit" disabled={loading}>
                    {loading ? 'Processing...' : 'Process'}
                </button>
            </form>
            
            {loading && (
                <div>Loading...</div>
            )}
            
            {result && (
                <div style={{ whiteSpace: 'pre-wrap' }}>
                    Result:
                    {typeof result === 'string' ? result : JSON.stringify(result, null, 2)}
                </div>
            )}
        </div>
    );
};

export default StructuredOutput;

3. Data Schema (Pydantic Model)

Below is the Pydantic schema for the input data:

from pydantic import BaseModel
from typing import Literal

class InputSchema(BaseModel):
    text: str
    output_format: Literal["json", "csv"] = "json"
    options: Optional[dict] = None
    
    class Config:
        arbitrary_types_allowed = True

Summary

This module can be integrated into larger systems requiring text processing capabilities.

Structured Output Generator Documentation

Overview

The Structured Output Generator is an AI-powered module designed to transform unstructured input data into organized, usable formats. This tool is essential for developers seeking to extract meaningful insights from raw data sources such as text, logs, or social media feeds.



Use Cases

  1. Social Media Analytics: Extract user sentiments and trends from unstructured social media posts.
  2. Document Parsing: Convert scanned PDFs or emails into structured formats like JSON for database storage.
  3. System Logs Processing: Transform raw log entries into structured data for efficient monitoring and troubleshooting.

Integration Tips


Configuration Options

ParameterDescriptionDefault Value
input_formatSpecifies the format of input data (e.g., text, JSON).“text”
output_formatDetermines the output structure (e.g., JSON, CSV).“json”
processing_modeSets processing strategy: synchronous or asynchronous.”synchronous”
batch_sizeNumber of records processed in each batch.100
model_versionVersion of the AI model used for processing.”latest”

Additional Resources


This documentation provides a comprehensive guide for developers integrating the Structured Output Generator, ensuring efficient data processing and optimal system performance.