Prompt Optimization Layer

AI → Gold
đź’° $2000

Enhances and sanitizes user prompts before sending to AI models.

Technology iconTechnology iconTechnology icon

Overview of Prompt Optimization Layer Module

Purpose

The Prompt Optimization Layer module is designed to enhance and sanitize user prompts before they are sent to AI models. This ensures that the prompts are not only effective but also safe, leading to improved AI interactions.

Key Benefits

Usage Scenarios

The module is ideal for:

  1. General AI Applications: Enhancing NLP tasks such as chatbots, content generation, and automated responses.
  2. Content Moderation: Filtering out harmful or sensitive content in real-time.
  3. API Integrations: Securing third-party prompt inputs within APIs.
  4. Custom Workflows: Tailoring optimization processes to specific project needs.

Features

This module is essential for developers seeking reliable, secure, and efficient AI interactions without additional effort.

Key Features of the Prompt Optimization Layer Module

1. Prompt Sanitization

2. Contextual Enhancement

3. Token Limit Management

4. Customizable Prompt Templates

5. Performance Optimization

6. Cross-Platform Compatibility

7. Logging and Monitoring

8. Versioning and Updates

Each feature addresses critical aspects of security, efficiency, customization, maintainability, and adaptability, making the module a robust tool for developers integrating AI capabilities.

Technical Documentation for Prompt Optimization Layer

This module enhances and sanitizes user prompts before sending them to AI models. It provides a robust API endpoint and a user-friendly web interface.


1. FastAPI Endpoint

The following FastAPI endpoint processes incoming prompts, applies optimization techniques, and returns the sanitized version.

from fastapi import FastAPI, HTTPException
from pydantic import InputPrompt

app = FastAPI()

@app.post("/optimize-prompt")
async def optimize_prompt(request: InputPrompt):
    prompt = request.prompt
    
    # Basic sanitization
    prompt = prompt.strip()
    prompt = prompt.lower()
    
    # Example optimization logic (replace slang)
    slang_map = {
        "yo": "you",
        "wtf": "what the flux",
        "nah": "not at all"
    }
    
    words = prompt.split()
    optimized_words = []
    for word in words:
        if word in slang_map:
            optimized_words.append(slang_map[word])
        else:
            optimized_words.append(word)
    optimized_prompt = ' '.join(optimized_words)
    
    return {"original_prompt": prompt, "optimized_prompt": optimized_prompt}

2. React UI Snippet

A simple React component that allows users to input prompts and view the optimized version.

import React, { useState } from 'react';

const PromptOptimizer = () => {
    const [inputPrompt, setInputPrompt] = useState('');
    const [outputPrompt, setOutputPrompt] = useState('');
    const [loading, setLoading] = useState(false);

    const handleOptimize = async () => {
        if (!inputPrompt.trim()) return;
        
        setLoading(true);
        try {
            const response = await fetch('/api/optimize-prompt', {
                method: 'POST',
                headers: {
                    'Content-Type': 'application/json',
                },
                body: JSON.stringify({ prompt: inputPrompt }),
            });
            
            if (!response.ok) throw new Error('Failed to optimize prompt');
            const data = await response.json();
            setOutputPrompt(data.optimized_prompt);
        } catch (error) {
            console.error('Error:', error);
            setOutputPrompt(error.message || 'Failed to optimize prompt');
        } finally {
            setLoading(false);
        }
    };

    return (
        <div className="promptOptimizer">
            <h1>Prompt Optimizer</h1>
            <input
                type="text"
                value={inputPrompt}
                onChange={(e) => setInputPrompt(e.target.value)}
                placeholder="Enter your prompt here..."
            />
            <button onClick={handleOptimize} disabled={loading}>
                {loading ? 'Optimizing...' : 'Optimize Prompt'}
            </button>
            {outputPrompt && (
                <div className="result">
                    <h3>Optimized Prompt:</h3>
                    <p>{outputPrompt}</p>
                </div>
            )}
        </div>
    );
};

export default PromptOptimizer;

3. Data Schema (Pydantic)

Define the input schema for the prompt optimization endpoint.

from pydantic import BaseModel

class InputPrompt(BaseModel):
    prompt: str
    """The user's input prompt to be optimized."""

This documentation provides a complete solution for integrating and using the Prompt Optimization Layer in your applications.

Prompt Optimization Layer Documentation

Module Name: Prompt Optimization Layer

Category: AI

Summary: Enhances and sanitizes user prompts before sending them to AI models.



Use Cases

1. Sanitizing User Prompts

2. Enhancing Context for Better Responses

3. Optimizing for Specific AI Models


Integration Tips

1. Modular Integration

2. Error Handling

3. Configuration Best Practices


Configuration Options

ParameterTypeDefault ValueDescription
enable_sanitizeBooleanTrueEnables or disables prompt sanitization.
max_length_adjustmentInteger512Maximum length of prompts after optimization (in tokens).
context_injection_enabledBooleanFalseControls whether context injection is enabled for enriched prompts.
logging_levelString"INFO"Sets the logging level for prompt processing operations.

Example Usage

from prompt_optimization_layer import optimize_prompt

# Example: Sanitize and optimize a user prompt
user_prompt = "What is your opinion about AI?"
optimized_prompt = optimize_prompt(user_prompt, enable_sanitize=True)

print(optimized_prompt)

This documentation provides developers with the necessary information to integrate and configure the Prompt Optimization Layer effectively.