Prompt Library Manager

AI → Silver
💰 $1000

Centralizes and standardizes reusable prompts for consistent AI behavior.

Technology iconTechnology iconTechnology icon

Overview of the Prompt Library Manager Module

The Prompt Library Manager module is designed to streamline the management and utilization of prompts within AI-driven applications. It serves as a centralized hub for creating, organizing, and reusing standardized prompts, ensuring consistency and efficiency across development efforts.

Purpose

Benefits

Usage Scenarios

This module is an essential tool for developers aiming to build reliable, efficient, and scalable AI applications by managing their prompts effectively.

Centralized Prompt Repository

This feature provides a unified storage location for all AI prompts, eliminating duplication and making it easy to locate and manage prompts across different projects or applications.

Version Control System (VCS) Integration

The module supports integration with version control systems like Git, enabling developers to track changes, revert to previous versions, and collaborate effectively on prompt development and refinement.

Categorization and Tagging

Prompts can be organized using custom tags and categories, allowing for quick search and retrieval based on specific criteria, such as use case or industry.

Validation Rules Engine

A set of configurable validation rules ensures that prompts adhere to predefined standards, including syntactic correctness, semantic clarity, and ethical guidelines.

Analytics and Reporting Dashboard

An integrated dashboard provides insights into prompt usage patterns, performance metrics, and error rates, helping developers optimize and improve AI interactions.

Cross-Platform Compatibility

The module supports integration with various AI platforms and frameworks, ensuring compatibility with tools like OpenAI, Anthropic, and Hugging Face models.

Collaboration Features

Built-in collaboration tools enable teams to work together on prompt development, including shared editing sessions, comments, and approval workflows.

Customizable Templates

Developers can create and save custom prompt templates, accelerating the creation of new prompts and ensuring consistent structure and style.

Security and Access Control

The module includes role-based access control (RBAC) and encryption to safeguard sensitive information within prompts and ensure compliance with data protection regulations.

Export/Import Functionality

Prompts and associated metadata can be exported in various formats for sharing across environments or systems, facilitating seamless migration and deployment.

Prompt Library Manager Documentation

Overview

The Prompt Library Manager is a module designed to centralize and standardize reusable prompts for consistent AI behavior. It provides an easy-to-use interface for managing, organizing, and retrieving prompts.

Key Features

API Reference

Data Schema (Pydantic)

# models.py
from pydantic import BaseModel, Field
from typing import List, Optional
from datetime import datetime

class Prompt(BaseModel):
    id: str = Field(..., description="Unique identifier of the prompt")
    content: str = Field(..., description="The actual prompt text")
    context: Optional[str] = Field(None, description="Contextual information for the prompt")
    examples: List[str] = Field(default=[], description="Examples of how the prompt should be used")
    tags: List[str] = Field(default=[], description="List of relevant tags for the prompt")
    created_at: datetime = Field(..., description="Timestamp when the prompt was created")
    last_modified: datetime = Field(..., description="Timestamp when the prompt was last modified")

class PromptResponse(Prompt):
    id: str
    content: str
    context: Optional[str]
    examples: List[str]
    tags: List[str]

FastAPI Endpoint Example

# routes.py
from fastapi import APIRouter, Depends, HTTPException
from typing import List
from datetime import datetime
from models import Prompt, PromptResponse

router = APIRouter(prefix="/prompts", tags=["prompts"])

# Mock database (replace with your database implementation)
prompts_db = []

async def get_prompts() -> List[PromptResponse]:
    return [PromptResponse(**prompt.dict()) for prompt in prompts_db]

async def add_prompt(prompt: Prompt) -> PromptResponse:
    prompt_dict = prompt.dict()
    prompt_dict["created_at"] = datetime.now()
    prompt_dict["last_modified"] = datetime.now()
    new_prompt = Prompt(**prompt_dict)
    prompts_db.append(new_prompt)
    return new_prompt

async def get_prompt_by_id(prompt_id: str) -> Optional[PromptResponse]:
    for prompt in prompts_db:
        if prompt.id == prompt_id:
            return prompt
    raise HTTPException(status_code=404, detail="Prompt not found")

@router.get("/", response_model=List[PromptResponse])
async def get_all_prompts():
    return await get_prompts()

@router.post("/add", response_model=PromptResponse)
async def add_new_prompt(prompt: Prompt):
    return await add_prompt(prompt)

@router.get("/{prompt_id}", response_model=PromptResponse)
async def get_prompt(prompt_id: str):
    prompt = await get_prompt_by_id(prompt_id)
    if not prompt:
        raise HTTPException(status_code=404, detail="Prompt not found")
    return prompt

@router.delete("/{prompt_id}")
async def delete_prompt(prompt_id: str):
    for index, prompt in enumerate(prompts_db):
        if prompt.id == prompt_id:
            del prompts_db[index]
            return {"message": "Prompt deleted successfully"}
    raise HTTPException(status_code=404, detail="Prompt not found")

React UI Example

# components/PromptList.js
import React, { useState, useEffect } from 'react';

function PromptList() {
  const [prompts, setPrompts] = useState([]);
  const [loading, setLoading] = useState(true);
  const [error, setError] = useState(null);

  useEffect(() => {
    fetch('/api/prompts/')
      .then(res => res.json())
      .then(data => setPrompts(data))
      .catch(err => setError(err))
      .finally(() => setLoading(false));
  }, []);

  if (loading) return <div>Loading...</div>;
  
  if (error) return <div>Error: {error.message}</div>;

  return (
    <div>
      <h1>AI Prompt Library</h1>
      <ul>
        {prompts.map(prompt => (
          <li key={prompt.id} className="prompt-item">
            <h3>{prompt.content}</h3>
            <p className="tags">Tags: {prompt.tags.join(', ')}</p>
            <button onClick={() => window.location.href = `/prompt/${prompt.id}`} className="view-btn">View Details</button>
          </li>
        ))}
      </ul>
    </div>
  );
}

export default PromptList;

Usage

  1. Setup: Integrate the API endpoint into your application.
  2. Create Prompts: Use the /api/prompts/add endpoint to add new prompts.
  3. Retrieve Prompts: Use the /api/prompts/ endpoint to fetch all prompts or a specific prompt by ID.
  4. Update Prompts: Modify existing prompts using the appropriate endpoints.

Contributing

Issues


This documentation provides a comprehensive guide to using the Prompt Library Manager module. The included code samples are meant to illustrate functionality; for production use, additional error handling and database integration will be necessary.

Prompt Library Manager Module Documentation

Overview

The Prompt Library Manager module is designed to centralize and standardize reusable prompts, ensuring consistent AI behavior across various components of an application or system. This module is particularly useful for developers aiming to manage and maintain a collection of prompts efficiently.

Use Cases

  1. Centralized Prompt Management: Manage all AI prompts in a single location, simplifying updates and maintenance.
  2. Cross-Module Consistency: Ensure consistent AI behavior across modules by using standardized prompts.
  3. Versioning and Auditing: Track changes to prompts for compliance and auditing purposes.
  4. Multi-Language Support: Integrate with the Language Translator module to support diverse language needs.

Integration Tips

  1. Dependency Injection: Use dependency injection to integrate the Prompt Library Manager into your application’s modules.
  2. Prompt Migration: Provide guidelines or scripts for migrating existing prompts into the library.
  3. Error Handling: Implement robust error handling for invalid prompt requests and cache misses.
  4. Logging: Log usage of prompts and errors for monitoring and troubleshooting.

Configuration Options

OptionDescriptionData TypeDefault ValueNotes
prompt-library-pathPath to the directory containing prompt definitions.String./promptsMust be writable for updates.
cache-enabledEnable caching of frequently accessed prompts.BooleantrueCan improve performance if enabled.
default-versionDefault version of prompts to use when not specified.StringlatestUse ‘latest’ or specify a version tag.
prompt-validatorEnable integration with the Prompt Validator module.BooleanfalseEnsures syntactic correctness.

Notes

This documentation provides a comprehensive guide for developers integrating the Prompt Library Manager module, ensuring efficient and consistent management of AI prompts.