Keyword Highlighter Tool

AI → Bronze
đź’° $500

Highlights important terms, errors, or themes in user input.

Technology iconTechnology iconTechnology icon

Overview: Keyword Highlighter Tool

The Keyword Highlighter Tool is a powerful AI-powered module designed to identify and emphasize important terms, errors, or recurring themes within user input. This tool is particularly useful for developers who need to quickly locate critical information in code snippets, logs, or technical documentation.

Purpose

The primary purpose of the Keyword Highlighter Tool is to streamline the process of analyzing text-based data by automatically identifying and highlighting key elements. Whether it’s extracting meaningful keywords from a large dataset, flagging errors in code, or pinpointing recurring themes in user feedback, this tool enables developers to focus on what matters most without sifting through unnecessary information.

Benefits

Usage Scenarios

1. Debugging Code

2. Analyzing Logs

3. Code Reviews

4. Technical Writing

5. Data Analysis

The Keyword Highlighter Tool is an indispensable utility for developers seeking to enhance their workflow, improve code quality, and make data-driven decisions with ease.

Keyword Highlighter Tool Features

1. Keyword Identification

The tool uses advanced AI algorithms to detect important terms in user input, making it easier to identify key concepts or phrases within text.

2. Error Detection

It identifies potential errors or issues in the input, such as misspelled words or grammatical mistakes, and flags them for review.

3. Theme Analysis

The tool analyzes the context of the input to detect overarching themes or topics, aiding in content categorization or sentiment analysis.

4. Case Sensitivity

It supports both case-sensitive and case-insensitive keyword detection, allowing developers to tailor it to their specific requirements.

5. Regex Support

Includes regex pattern matching capabilities for precise identification of keywords or patterns based on regular expressions.

6. Customizable Dictionaries

Developers can create and manage custom dictionaries to define domain-specific terms, enhancing the tool’s relevance in specialized contexts.

7. Context-Aware Highlighting

The tool evaluates surrounding text to avoid highlighting irrelevant instances of keywords, ensuring accurate and meaningful results.

8. Performance Optimization

Engineered with efficient algorithms for quick processing, even with large datasets, making it suitable for real-time applications.

9. Integration Capabilities

Provides APIs and code snippets for seamless integration into existing systems or workflows, supporting multiple programming languages like Python, Java, and JavaScript.

10. Logging and Debugging

Generates detailed logs and reports for troubleshooting issues, aiding developers in optimizing the tool’s performance.

11. Scalability

Designed to handle increasing data volumes and complexity, ensuring long-term reliability as applications grow.

These features make the Keyword Highlighter Tool a robust solution for developers seeking efficient and accurate text analysis tools.

Module Name: Keyword Highlighter Tool

Category: AI

Summary:

The Keyword Highlighter Tool is a module designed to identify and highlight important terms, errors, or themes in user input text. It leverages natural language processing (NLP) techniques to provide context-aware keyword extraction.

Target User: Developer


API Endpoint Example (FastAPI)

from fastapi import FastAPI
from typing import Optional
from pydantic import BaseModel

app = FastAPI()

class InputText(BaseModel):
    text: str
    keywords: Optional[bool] = False
    errors: Optional[bool] = False
    themes: Optional[bool] = False

@app.post("/highlight")
async def highlight_keywords(data: InputText):
    """
    Highlights important terms, errors, or themes in the input text.
    
    Args:
        text: Input text to analyze
        keywords: Whether to extract keywords (default: False)
        errors: Whether to identify errors (default: False)
        themes: Whether to extract themes (default: False)
        
    Returns:
        Dictionary with highlighted terms and their categories
    """
    # Mock implementation - replace with actual NLP processing
    mock_keywords = ["important", "terms", "errors"]
    mock_errors = ["syntax", "logical"]
    mock_themes = ["NLP", "text analysis"]
    
    result = {}
    if data.keywords:
        result["keywords"] = mock_keywords
    if data.errors:
        result["errors"] = mock_errors
    if data.themes:
        result["themes"] = mock_themes
        
    return {"result": result}

React UI Example

import React, { useState } from "react";
import { BrowserRouter as Router, Route, Link } from "react-router-dom";

function KeywordHighlighter() {
  const [inputText, setInputText] = useState("");
  const [highlightedTerms, setHighlightedTerms] = useState([]);

  const handleHighlight = async (e) => {
    e.preventDefault();
    try {
      const response = await fetch("/api/hIGHLIGHT", {
        method: "POST",
        headers: {
          "Content-Type": "application/json",
        },
        body: JSON.stringify({ text: inputText }),
      });
      
      const data = await response.json();
      setHighlightedTerms(data.result);
    } catch (error) {
      console.error("Error:", error);
    }
  };

  return (
    <div className="container">
      <h1>Keyword Highlighter</h1>
      <form onSubmit={handleHighlight}>
        <textarea
          value={inputText}
          onChange={(e) => setInputText(e.target.value)}
          placeholder="Enter your text here..."
          className="input-area"
        />
        <button type="submit" className="highlight-button">
          Highlight Keywords
        </button>
      </form>
      
      {highlightedTerms && (
        <div className="result-section">
          <h2>Highlighted Terms</h2>
          <pre>{JSON.stringify(highlightedTerms, null, 2)}</pre>
        </div>
      )}
    </div>
  );
}

export default KeywordHighlighter;

Data Schema Example (Pydantic)

from pydantic import BaseModel

class InputText(BaseModel):
    text: str
    keywords: Optional[bool] = False
    errors: Optional[bool] = False
    themes: Optional[bool] = False

class KeywordHighlightResponse(BaseModel):
    result: dict
    
# Example validation
try:
    data = InputText.parse_obj({
        "text": "This is a sample text with important keywords.",
        "keywords": True,
        "errors": False,
        "themes": True
    })
    print(data)
except ValueError as e:
    print("Validation error:", e)

Notes:

  1. API Endpoint:

    • The FastAPI endpoint accepts JSON input and returns highlighted terms based on the specified parameters (keywords, errors, themes).
    • The response includes a dictionary with the highlighted terms categorized under their respective categories.
  2. React UI:

    • A simple text area where users can input text.
    • On submission, it sends the text to the API endpoint and displays the results in a formatted JSON block.
    • Mock implementation for demonstration purposes; replace with actual NLP processing.
  3. Data Schema:

    • Uses Pydantic models for request validation and response schemas.
    • InputText model defines the input structure, while KeywordHighlightResponse defines the expected output format.

This documentation provides a complete implementation example of the Keyword Highlighter Tool, including API endpoints, UI components, and data schemas.

Keyword Highlighter Tool Documentation

Overview

The Keyword Highlighter Tool is designed to identify and emphasize important terms, errors, or recurring themes within user input text. This tool leverages AI-driven natural language processing (NLP) techniques to provide context-aware highlighting.



Use Cases

  1. Real-Time Chat Support
    Highlight user queries to quickly identify common issues or keywords for faster resolution.

  2. Code Review Assistance
    Emphasize errors, warnings, or best practices in code reviews by highlighting key terms.

  3. Technical Documentation Improvement
    Identify and highlight critical concepts in technical documents for easier understanding.

  4. Content Moderation
    Flag sensitive or harmful keywords in user-generated content for moderation purposes.

  5. SEO Optimization
    Highlight important keywords in web content to improve search engine rankings.


Integration Tips


Configuration Options

OptionDescriptionDefault Value
enabledEnable/disable the highlighting feature.true
highlight_colorColor code for highlighted text (hex or RGB).#ffeb3b
keyword_listList of keywords to prioritize for highlighting.Empty list
context_sensitivityLevel of context awareness (low, medium, high).medium
max_matchesMaximum number of matches to highlight per input.10
ignore_caseIgnore case sensitivity when matching keywords.false
regex_patternsCustom regular expressions for advanced keyword detection.Empty list
performance_modeEnable optimized processing for large datasets (basic, advanced).basic
logging_levelLogging verbosity (debug, info, warning, error).info

Conclusion

The Keyword Highlighter Tool is a powerful AI-based utility that enhances text analysis by highlighting key terms. Its modular design and flexible configuration make it suitable for various applications, from real-time support to content moderation.