AI Essay Scorer

AI → Platinum
💰 $3500

Evaluates long-form text for grammar, logic, clarity, and originality.

Technology iconTechnology iconTechnology icon

AI Essay Scorer Module Overview

Purpose

The AI Essay Scorer module is designed to evaluate long-form text by assessing grammar, logic, clarity, and originality. This module leverages advanced AI models to provide context-aware evaluations, making it a valuable tool for educators, writers, researchers, and developers seeking automated insights into written content.

Benefits

Usage Scenarios

This module empowers developers to integrate robust text evaluation capabilities into their applications, enhancing functionality and user experience.

Grammar and Syntax Analysis

Automatically identifies and corrects grammatical errors, such as subject-verb agreement, punctuation mistakes, and article usage, ensuring proper sentence structure.

Logical Structure Evaluation

Analyzes the flow of ideas in essays to check for coherence, relevance, and logical progression between paragraphs, ensuring a well-organized argument or narrative.

Clarity and Readability Score

Evaluates how clear and easy-to-understand the text is, providing feedback on word choice, sentence complexity, and overall readability.

Plagiarism Detection

Compares essay content against a database of published works to identify potential plagiarism and provide similarity scores for originality assessment.

Contextual Understanding

Uses advanced AI models to understand the meaning and context of the essay, enabling nuanced feedback on idea development and depth of analysis.

Tone and Style Analysis

Assesses the tone of the essay (e.g., formal, informal, academic) and provides suggestions to align it with the intended purpose or audience.

Reference Comparison

Compares the essay against predefined scoring rubrics or grading criteria, providing a quantitative assessment of key elements like content, organization, and language use.

Performance Metrics

Generates statistical reports on essay length, word count, sentence complexity, and other measurable parameters to support data-driven feedback.

Exportable Feedback Reports

Exports detailed analysis in formats such as PDF or CSV, allowing developers to integrate the results into external tools or platforms.

API Integration Capabilities

Enables seamless integration with third-party applications, providing real-time essay scoring and feedback through a programmable interface.

User-Customizable Settings

Allows users to define custom scoring parameters, thresholds, and evaluation criteria to tailor the module’s behavior for specific use cases.

Technical Documentation: AI Essay Scorer Module


1. FastAPI Endpoint

This FastAPI endpoint accepts a long-form text input and returns an evaluation of grammar, logic, clarity, and originality.

# ai_essay_scorer/api.py
from fastapi import FastAPI, HTTPException
from typing import Dict, Any
from pydantic import BaseModel

app = FastAPI()

class EssayInput(BaseModel):
    essay_text: str

@app.post("/scoreEssay")
async def scoreEssay(essay_input: EssayInput) -> Dict[str, Any]:
    # Simplified scoring logic (replace with actual AI model)
    scores = {
        "grammar": 92,
        "logic": 88,
        "clarity": 95,
        "originality": 85
    }
    
    explanations = {
        "grammar": "Prose is grammatically correct with minimal errors.",
        "logic": "Strong logical flow with minor inconsistencies.",
        "clarity": "Clear and well-organized text with excellent coherence.",
        "originality": "Content shows significant original thought but could be more unique."
    }
    
    confidence = {
        "grammar": 90.5,
        "logic": 87.3,
        "clarity": 94.2,
        "originality": 86.1
    }

    return {
        "scores": scores,
        "explanations": explanations,
        "confidence": confidence
    }

2. React UI Snippet

This React component provides a simple user interface for submitting essays and displaying the AI evaluation.

import React, { useState } from 'react';

interface EssayScore {
  category: string;
  score: number;
  explanation: string;
  confidence: number;
}

export const EssayScorer = () => {
  const [essayText, setEssayText] = useState("");
  const [scores, setScores] = useState<EssayScore[]>([]);

  const handleSubmit = async (e: React.FormEvent) => {
    e.preventDefault();
    try {
      const response = await fetch('/api/scoreEssay', {
        method: 'POST',
        headers: {
          'Content-Type': 'application/json',
        },
        body: JSON.stringify({ essay_text: essayText }),
      });

      if (!response.ok) {
        throw new Error('Failed to score essay');
      }

      const data = await response.json();
      setScores([
        { category: 'Grammar', score: data.scores.grammar, explanation: data.explanations.grammar, confidence: data.confidence.grammar },
        { category: 'Logic', score: data.scores.logic, explanation: data.explanationslogic, confidence: data.confidence.logc },
        { category: 'Clarity', score: data.scores.clarity, explanation: data.explanations.clarity, confidence: data.confidence.clarity },
        { category: 'Originality', score: data.scores.originality, explanation: data.explanations.originality, confidence: data.confidence.originality }
      ]);
    } catch (error) {
      console.error('Error:', error);
    }
  };

  return (
    <div style={{ maxWidth: 800, margin: '20px auto' }}>
      <h1>AI Essay Scorer</h1>
      
      <form onSubmit={handleSubmit}>
        <textarea
          value={essayText}
          onChange={(e) => setEssayText(e.target.value)}
          placeholder="Enter your essay here..."
          style={{ width: '100%', height: 200, padding: 10 }}
        />
        
        <button type="submit" style={{ margin: '20px 0' }}>Score Essay</button>
      </form>

      {scores.length > 0 && (
        <div style={{ marginTop: 20 }}>
          {scores.map((score) => (
            <div key={score.category} style={{ marginBottom: 15, padding: 10, border: '1px solid #eee' }}>
              <h3>{score.category}: {score.score}%</h3>
              <p><strong>Explanation:</strong> {score.explanation}</p>
              <p><strong>Confidence:</strong> {score.confidence.toFixed(1)}%</p>
            </div>
          ))}
        </div>
      )}
    </div>
  );
};

3. Pydantic Data Schema

This schema defines the input and output structure for the AI Essay Scorer.

# ai_essay_scorer/models.py
from pydantic import BaseModel

class EssayInputSchema(BaseModel):
    essay_text: str
    """The text of the essay to be scored."""

class EssayScoreSchema(BaseModel):
    category: str
    score: float
    explanation: str
    confidence: float

class EssayOutputSchema(BaseModel):
    scores: Dict[str, int] = {
        "grammar": 0,
        "logic": 0,
        "clarity": 0,
        "originality": 0
    }
    explanations: Dict[str, str] = {
        "grammar": "",
        "logic": "",
        "clarity": "",
        "originality": ""
    }
    confidence: Dict[str, float] = {
        "grammar": 0.0,
        "logic": 0.0,
        "clarity": 0.0,
        "originality": 0.0
    }

Summary

The AI Essay Scorer module provides developers with a comprehensive API to evaluate long-form texts, along with an example React frontend for integration.

AI Essay Scorer Module Documentation

Use Cases

  1. Academic Settings: Used by educators for grading and feedback.
  2. Content Creation: Assists writers in improving content quality.
  3. Plagiarism Checker Integration: Enhances originality checks with source verification.
  4. Editorial Tools: Improves texts before publication.
  5. Corporate Use: Evaluates candidate essays during hiring.

Integration Tips

Configuration Options

ParameterDescriptionDefault Value
enable_grammar_checkEnable/disable grammar scoring.True
max_word_limitMaximum word count for evaluation.500
originality_thresholdThreshold for originality score (0-100).70
enable_logic_evaluationEnable/disable logic structure scoring.True
confidence_scoreMinimum confidence percentage for scoring decisions.85

This documentation provides a comprehensive guide to integrating and configuring the AI Essay Scorer module, ensuring efficient and effective evaluation of long-form texts.